- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000002010000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Budin, Itay (3)
-
Milshteyn, Daniel (3)
-
Armando, Aaron M (2)
-
Dennis, Edward A (2)
-
Winnikoff, Jacob R (2)
-
Gillilan, Richard E (1)
-
Girguis, Peter R (1)
-
Haddock, Steven HD (1)
-
Kocharian, Elida (1)
-
Lyman, Edward (1)
-
Moore, William M. (1)
-
Pedraza-Joya, Miguel A (1)
-
Quehenberger, Oswald (1)
-
Sodt, Alexander (1)
-
Tsai, Yi-Ting (1)
-
Vargas-Urbano, Sasiri J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cell membranes are composed of both bilayer-supporting and non-bilayer phospholipids, with the latter’s negative intrinsic curvature aiding in membrane trafficking and the dynamics of membrane proteins. Phospholipid metabolism has long been recognized to maintain membrane fluidity, but whether it also acts to maintain the function of high-curvature lipids is not resolved. Here, we find that cells grown under hydrostatic pressure – used to artificially reduce lipid curvature – maintain lipidome curvature through metabolic acclimation. We first observed that manipulation of the lipidome curvature via the phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio affects high-pressure growth and viability of yeast independently of membrane fluidity. In wild-type cells, X-ray scattering measurements revealed an increased propensity for lipid extracts to form non-lamellar phases after extended pressure incubations. Unexpectedly, this change in phase behavior was not due to increased levels of PE, but of phosphatidylinositol (PI), the only major phospholipid class whose curvature had not been previously characterized. We found that PI is a non-bilayer lipid, with a negative curvature intermediate to that of PE and PC. Accounting for PI, mean lipidome curvature was defended in response to pressure by two distantly related yeasts. Lipidome curvature also responded to pressure in a human cancer cell line through ether phospholipid metabolism and chain remodeling, but not in bacterial cells. These findings indicate that eukaryotic phospholipid metabolism uses diverse mechanisms to maintain curvature frustration in cell membranes.more » « lessFree, publicly-accessible full text available October 14, 2026
-
Winnikoff, Jacob R; Milshteyn, Daniel; Vargas-Urbano, Sasiri J; Pedraza-Joya, Miguel A; Armando, Aaron M; Quehenberger, Oswald; Sodt, Alexander; Gillilan, Richard E; Dennis, Edward A; Lyman, Edward; et al (, Science)Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals’ depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance inEscherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.more » « less
-
Moore, William M.; Milshteyn, Daniel; Tsai, Yi-Ting; Budin, Itay (, Current Opinion in Chemical Biology)
An official website of the United States government
